Abstract

In Chapter 1 we discussed the principles of developmental cognitive systems in general, and of enactive systems in particular. Chapters 2, 3, and 4 identified the constraints arising from the developmental psychology and neurophysiology of neonates, while Chap. 5 revealed a number of insights derived from several computational models of cognition. Now we weave all of these constraints, requirements, and insights together to produce a comprehensive list of functional, organizational, and developmental guidelines for an artificial system that is capable of developing cognitive abilities. These guidelines provide the basis for the design of an enactive cognitive architecture and its practical deployment. In other words, they define a roadmap for the development of cognitive abilities in a humanoid robot, a roadmap which embraces both phylogeny and ontogeny. In the next chapter, we describe the current status of a project to implement these guidelines in a cognitive architecture for the iCub humanoid robot. This cognitive architecture, together with the physical robot, provides the platform for the development of cognitive abilities. The developmental process — or ontogenesis — must proceed in a structured manner. Consequently, we will draw heavily on the material in Chap. 3 on the development of human INFANTS to inform this structure and present a roadmap for ontogenesis. Thus, our roadmap has two sides: the phylogenetic side, informed by enaction, developmental psychology, neurophysiology, and computational modelling, and the ontogenetic side, informed by developmental psychology (see Fig. 6.1). We begin by addressing the phylogeny of the system in Sect. 6.1 and then turn to its ontogeny in Sect. 6.2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call