Abstract

BackgroundNebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia. Many factors may influence pulmonary drug concentrations with inaccurate dosing schedules potentially leading to therapeutic failure and/or the emergence of antibiotic resistance. We describe a research pathway for studying the pharmacokinetics of a nebulised antibiotic during mechanical ventilation using in vitro methods and ovine models, using tobramycin as the study antibiotic.MethodsIn vitro studies using a laser diffractometer and a bacterial-viral filter were used to measure the effect of the type and size of tracheal tubes and antibiotic concentration on the particle size distribution of the tobramycin 400 mg (4 ml; 100 mg/ml) and 160 mg (4 ml, 40 mg/ml) aerosol and nebulised mass delivered. To compare the regional drug distribution in the lung of two routes (intravenous and nebulised) of drug administration of tobramycin 400 mg, technetium-99m-labelled tobramycin 400 mg with planar nuclear medicine imaging was used in a mechanically ventilated ovine model. To measure tobramycin concentrations by intravenous and nebulised tobramycin 400 mg (4 ml, 100 mg/ml) administration in the lung interstitial space (ISF) fluid and blood of mechanically ventilated sheep, the microdialysis technique was used over an 8-h duration.ResultsTobramycin 100 mg/ml achieved a higher lung dose (121.3 mg) compared to 40 mg/ml (41.3 mg) solution. The imaging study with labelled tobramycin indicated that nebulised tobramycin distributed more extensively into each lung zone of the mechanically ventilated sheep than intravenous administration. A higher lung ISF peak concentration of tobramycin was observed with nebulised tobramycin (40.8 mg/l) compared to intravenous route (19.0 mg/l).ConclusionsThe research methods appear promising to describe lung pharmacokinetics for formulations intended for nebulisation during mechanical ventilation. These methods need further validation in an experimental pneumonia model to be able to contribute toward optimising dosing regimens to inform clinical trials and/or clinical use.

Highlights

  • Nebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia

  • To improve outcomes, nebulised antibiotic therapy has been recommended for prevention [2] and treatment of Ventilator-associated pneumonia (VAP) [3]

  • We investigated the effects of different concentrations of tobramycin (Tobra-day, Phebra) 100 mg/ml and 40 mg/ml (Tobramycin PF, Pfizer, Australia) on the nebulisation characteristics

Read more

Summary

Introduction

Nebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia. There are a number of factors involved in achieving optimal delivery [6, 7], which need to be characterised to ensure desired concentrations are achieved. These include physicochemical properties of the antibiotics, tracheal tube size and type [7,8,9], besides factors associated with mechanical ventilation such as ventilator settings, circuit-related factors, nebuliser factors and patient-related factors such as airway geometry and patency [7]. The pharmacokinetics (PK) of nebulised antibiotics during mechanical ventilation is not well understood

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.