Abstract
Abstract Aluminium alloys are preferred in most industries due to the functional properties they provide. It is known that alloys that can be processed with heat treatments shows better mechanical properties. 7xxx series alloys can be processed vi heat treatments and are often used in environmental conditions such as extreme temperatures and corrosive environments. Corrosive sensitivities such as stress corrosion cracking (SCC) can be observed with the effect of working conditions. It is known that retrogression and re-aging (RRA) heat treatment provide corrosion resistance and decrease the SCC velocity. The purpose of this study is to examine the tensile behaviour of annealed and retrogression-re-aging (RRA) heat treated AA7075 alloys at elevated temperatures. The mechanical properties of the alloys were investigated by conducting tensile tests at room temperature (RT), 100, 200, and 300°C. Hardness tests were performed at room temperature on the samples which were taken from tensile test specimens after tensile tests. The potential effects of test temperature on mechanical and microstructural properties were examined. The annealed and RRA heat treated alloys were characterized by scanning electron microscope (SEM), and X-ray diffraction (XRD) analysis. As a result, an increase in strength and hardness of the RRA treated AA7075 alloys was observed. Ductility of the RRA alloy was lower compared to the annealed AA7075 alloy. Fracture surface examinations showed that there was a semi-ductile fracture below 200°C and ductile fracture at temperatures of 200 and 300°C. Ductility was observed to increase with increasing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.