Abstract

This paper proposes a wheel slip control strategy for 4WD Electrical Vehicle with In-wheel Motors. In the first part of this paper, a brief introduction of sliding mode control for acceleration slip regulation is given. Consider that its control effect varies with road conditions, another algorithm which can automatically adapt to different roads is designed. This method takes advantage of the peculiarity of the longitudinal static tire force curve and regulates wheel slip ratio to the detected optimal value, aiming to maximize the traction force while preserving sufficient lateral tire force. Simulation results show that the slip rate can be regulated to a value around the optimal slip ratio, and the driving torque is very close to the maximum transmissible torque. The control strategy achieves stronger stability, shorter driving distance and hence better control performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.