Abstract

The total power budget of Ultra-Low Power (ULP) VLSI Systems-on-Chip (SoCs) is often dominated by the leakage power of embedded memories and pipeline registers, which typically cannot be power-gated during sleep periods as they need to retain data and program state, respectively. On the one hand, supply voltage scaling down to the near-threshold (near-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) or even to the sub-threshold (sub-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) domain is a commonly used, efficient technique to reduce both leakage power and active energy dissipation. On the other hand, emerging CMOS-compatible device technologies such as Resistive Memories (ReRAMs) enable non-volatile, on-chip data storage and zero-leakage sleep periods. For the first time, we present a ReRAM-based non-volatile flip-flop which is optimized for sub-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> operation. Writing to the ReRAM devices works with a CMOS-compatible supply voltage. Thanks to near-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> and sub-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> operation and as compared to the write energy, which depends on the ReRAM technology, the read consumes only 5.4% of the total read+write energy. Monte Carlo simulations accounting for parametric variations in both the MOS transistors and the ReRAM devices confirm reliable data restore operation from the ReRAM devices at a sub-V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> voltage as low as 400 mV, and a standard deviation of up to 5% of the nominal value of the ReRAM resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.