Abstract

In the presence of mean strain or rotation, the anisotropy of turbulence increases due to the rapid pressure strain term. In this paper, we consider the modeling of the rapid pressure strain correlation of turbulence. The anisotropy of turbulence in the presence of mean strain is studied and a new model is formulated by calibrating the model constants at the rapid distortion limit. This model is tested for a range of plane strain and elliptic flows and compared to direct numerical simulation (DNS) results. The present model shows agreement with DNS and improvements over the earlier models like those by Launder et al. (1975, “Progress in the Development of a Reynolds-Stress Turbulence Closure,” J. Fluid Mech., 68(3), pp. 537–566.) and Speziale et al. (1991, “Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,” J. Fluid Mech., 227(1), pp. 245–272.) that have been reported to give satisfactory performance for hyperbolic flows but not satisfactory for elliptic flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.