Abstract
A representation result is provided for concave Schur concave functions on L∞(Ω). In particular, it is proven that any monotone concave Schur concave weakly upper semicontinuous function is the infinimum of a family of nonnegative affine combinations of Choquet integrals with respect to a convex continuous distortion of the underlying probability. The method of proof is based on the concave Fenchel transform and on Hardy and Littlewood's inequality. Under the assumption that the probability space is nonatomic, concave, weakly upper semicontinuous, law‐invariant functions are shown to coincide with weakly upper semicontinuous concave Schur concave functions. A representation result is, thus, obtained for weakly upper semicontinuous concave law‐invariant functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.