Abstract

Using a left multiplication defined on a right quaternionic Hilbert space, linear self-adjoint momentum operators on a right quaternionic Hilbert space are defined in complete analogy with their complex counterpart. With the aid of the so-obtained position and momentum operators, we study the Heisenberg uncertainty principle on the whole set of quaternions and on a quaternionic slice, namely on a copy of the complex plane inside the quaternions. For the quaternionic harmonic oscillator, the uncertainty relation is shown to saturate on a neighborhood of the origin in the case we consider the whole set of quaternions, while it is saturated on the whole slice in the case we take the slice-wise approach. In analogy with the complex Weyl–Heisenberg Lie algebra, Lie algebraic structures are developed for the quaternionic case. Finally, we introduce a quaternionic displacement operator which is square integrable, irreducible and unitary, and we study its properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.