Abstract
Every residuated lattice can be considered as an idempotent semiring. Conversely, if an idempotent semiring is finite, then it can be organized into a residuated lattice. Unfortunately, this does not hold in general. We show that if an idempotent semiring is equipped with an involution which satisfies certain conditions, then it can be organized into a residuated lattice satisfying the double negation law. Also conversely, every residuated lattice satisfying the double negation law can be considered as an idempotent semiring with an involution satisfying the mentioned conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.