Abstract
We study a representation for the inverse transform of the generalised Fourier–Feynman transform on the function space $C_{a,b}[0,T]$ which is induced by a generalised Brownian motion process. To do this, we define a transform via the concept of the convolution product of functionals on $C_{a,b}[0,T]$. We establish that the composition of these transforms acts like an inverse generalised Fourier–Feynman transform and that the transforms are vector space automorphisms of a vector space ${\mathcal{E}}(C_{a,b}[0,T])$. The vector space ${\mathcal{E}}(C_{a,b}[0,T])$ consists of exponential-type functionals on $C_{a,b}[0,T]$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.