Abstract
The general theory of lightlike submanifolds makes use of a non-degenerate screen distribution which is not unique and, therefore, the induced objects (starting from null curves) depend on the choice of a screen, which creates a problem. The purpose of this paper is to report on the existence of a canonical representation of null curves of Lorentzian manifolds and the choice of a canonical or a good screen for large classes of lightlike hypersurfaces of semi-Riemannian manifolds. We also prove a new theorem on the existence of an integrable canonical screen, subject to a geometric condition, and supported by a physical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Acta Applicandae Mathematicae
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.