Abstract

This paper considers a repairable M/G/1 retrial queue with Bernoulli schedule and a general retrial policy, which is motivated by a contention problem in the downlink direction of wireless base stations in cognitive radio networks. Arriving Customers (called primary arrivals) who cannot receive service upon arrival either join the infinite waiting space in front of the server (called as the normal queue) with probability $$q$$ , or enter the orbit with probability $$1-q$$ according to the FCFS discipline. If the server breaks down in the process of the service of a customer, the customer in service either joins the orbit queue or leaves the system forever. First, we study the ergodicity of two related embedded Markov chains and derive stationary distributions. Second, we find the steady-state joint generating function of the number of customers in both queues. Some important performance measures of the system are obtained. Third, the reliability analysis of the system is also given. Finally, numerical examples are given to illustrate the impact of system parameters on the system performance measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call