Abstract

This paper presents a complete algebraic analysis of the renormalizability of the $d=4$ operator $F^2_{\mu\nu}$ in the Gribov-Zwanziger (GZ) formalism as well as in the Refined Gribov-Zwanziger (RGZ) version. The GZ formalism offers a way to deal with gauge copies in the Landau gauge. We explicitly show that $F^2_{\mu\nu}$ mixes with other $d=4$ gauge variant operators, and we determine the mixing matrix $Z$ to all orders, thereby only using algebraic arguments. The mixing matrix allows us to uncover a renormalization group invariant including the operator $F^2_{\mu\nu}$. With this renormalization group invariant, we have paved the way for the study of the lightest scalar glueball in the GZ formalism. We discuss how the soft breaking of the BRST symmetry of the GZ action can influence the glueball correlation function. We expect non-trivial mass scales, inherent to the GZ approach, to enter the pole structure of this correlation function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.