Abstract

This paper is the third in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. In this paper, we motivate and present a general approach towards second-order perturbative renormalisation, and apply it to a specific supersymmetric field theory which represents the continuous-time weakly self-avoiding walk on $\mathbb{Z}^d$. Our focus is on the critical dimension $d=4$. The results include the derivation of the perturbative flow of the coupling constants, with accompanying estimates on the coefficients in the flow. These are essential results for subsequent application to the 4-dimensional weakly self-avoiding walk, including a proof of existence of logarithmic corrections to their critical scaling. With minor modifications, our results also apply to the 4-dimensional $n$-component $|\varphi|^4$ spin model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.