Abstract

In traditional long bone fracture reduction surgery, there are some drawbacks such as low accuracy, high radiation for surgeons and a risk of infection. To overcome these disadvantages, a removable hybrid robot system is developed, which integrates a removable series-parallel mechanism with a motor-double cylinder (MDC) driven mode. This paper describes the mechanism in detail, analyses the principle and the method of the fracture reduction, presents the surgical procedure, and verifies the reduction accuracy by experiments with bone models. The results are shown as follows. The mean deviations of the axial displacement and lateral displacement are 1.60mm and 1.26 mm respectively. The standard deviations are 0.69 mm and 0.30 mm. The mean deviations of the side angle and turn inward are 2.06° and 2.22° respectively. The standard deviations are 0.50° and 0.99°. This minimally invasive robot features high accuracy and zero radiation for surgeons, and is able to conduct fracture reduction for long bones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.