Abstract
There are few training samples in the remote sensing image classification. Therefore, it is a highly challenging problem that finds a good classification method which could achieve high accuracy and strong generalization to deal with those data. In this paper, we propose a new remote sensing image classification method based on extreme learning machine (ELM) ensemble. In order to promote the diversity within the ensemble, we do feature segmentation and nonnegative matrix factorization (NMF) to the original data firstly. Then ELM is chosen as base classifier to improve the classification efficiency. The experimental results show that the proposed algorithm not only has high classification accuracy, but also handles the adverse impact of few training samples in the classification of remote sensing well both on the remote sensing image and UCI data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.