Abstract
The temporal dynamics of optimum stomatal conductance (gsmax), as well differences between C3 and C4 crops, have rarely been considered in previous remote sensing (RS)-based Jarvis-type canopy conductance (Gc) models. To address this issue, a RS-based two-leaf Jarvis-type Gc model, RST-Gc, was optimized and validated for C3 and C4 crops using 19 crop flux sites across Europe, North America, and China. RST-Gc included restrictive functions for air temperature, vapor pressure deficit, and soil water deficit, and it used satellite-retrieved NDVI to formulate the temporal variation of gsmax defined at a photosynthetic photon flux density (PPFD) of 2000 μmol m−2 s−1 (gsm, 2000). Results showed that the parameters of RST-Gc differed between C3 and C4 crops. RST-Gc successfully simulated variations in Penman–Monteith (PM)-derived daytime Gc with R2 = 0.57 for both C3 and C4 crops. RST-Gc was incorporated into a revised evapotranspiration (ET) model and a new gross primary productivity (GPP) model. The two models were validated at 19 crop flux sites. Daily mean inputs were generally incorporated into a PM approach to model daily transpiration. This is inappropriate because available energy and stomatal conductance vary significantly on a diurnal basis, with both non-linearly regulating transpiration rate. The PM approach with daily mean inputs produced unreasonable transpiration rate estimates. Efforts were made in the revised ET model (denoted as RS-WBPM2), which was modified from the water balance based RS-PM (RS-WBPM) model of Bai et al. (2017), to address this issue by calculating transpiration using daytime inputs. The photosynthesis-based stomatal conductance model, developed by Ball et al. (1987a) and improved by Leuning (1995) (BBL model), was inverted to calculate GPP using canopy conductance; the inverted model was denoted as IBBL. Cross validation showed good agreement between flux tower measurements and modeled ET (R2 = 0.79, RMSE (root mean standard error) = 20.66 W m−2 for daily ET and R2 = 0.87, RMSE = 15.32 W m−2 for 16-day ET) and GPP (R2 = 0.83, RMSE = 2.49 gC m−2 d−1 for daily GPP and R2 = 0.86, RMSE = 1.96 gC m−2 d−1 for 16-day GPP) for the two models. Within-site validations demonstrated the successful performance of the two models at 18 sites (albeit with one outlier). Inter-site variations in ET and GPP were also successfully reproduced by the models. NDVI-derived gsm, 2000 outperformed the fixed gsm, 2000 in both ET and GPP estimates. The results imply that the RS-WBPM2 and IBBL models are useful tools for modeling regional and global ET and GPP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.