Abstract

Abstract. Construction of intensity–duration (ID) thresholds and early-warning and nowcasting systems for landslides (EWNSLs) are hampered by the paucity of temporal and spatial archival data. This work represents significant steps towards the development of a prototype EWNSL to forecast and nowcast landslides over the Faifa Mountains in the Red Sea Hills. The developed methodologies rely on readily available, temporal, archival Google Earth and Sentinel-1A imagery, precipitation measurements, and limited field data to construct an ID threshold for Faifa. The adopted procedures entail the generation of an ID threshold to identify the intensity and duration of precipitation events that cause landslides in the Faifa Mountains, and the generation of pixel-based ID curves to identify locations where movement is likely to occur. Spectral and morphologic variations in temporal Google Earth imagery following precipitation events were used to identify landslide-producing storms and generate the Faifa ID threshold (I =4.89D−0.65). Backscatter coefficient variations in radar imagery were used to generate pixel-based ID curves and identify locations where mass movement is likely to occur following landslide-producing storms. These methodologies accurately distinguished landslide-producing storms from non-landslide-producing ones and identified the locations of these landslides with an accuracy of 60 %.

Highlights

  • Mountainous areas worldwide with steep slopes, high precipitation, and limited vegetative cover often experience landslides

  • Two main types of landslides are often reported from the Faifa Mountains in Saudi Arabia

  • The second type results from failure along preexisting fracture planes (Lowell, 1990) that occurs when the following conditions are met (Norrish and Wyllie, 1996): (1) the strike of the planar discontinuity is similar to the strike of the slope face; (2) the dip of the planar discontinuity is less than that of the slope face and oriented in the same general direction; (3) the dip of the planar discontinuity is greater than the angle of the friction of the surface; and (4) the friction angle of the rock material is partially controlled by the size and shape of the grains exposed on the fracture surface and by the mass of the block above the planar discontinuity (Alharbi et al, 2014)

Read more

Summary

Introduction

Mountainous areas worldwide with steep slopes, high precipitation, and limited vegetative cover often experience landslides. The second type results from failure along preexisting fracture planes (Lowell, 1990) that occurs when the following conditions are met (Norrish and Wyllie, 1996): (1) the strike of the planar discontinuity is similar (within 20◦) to the strike of the slope face; (2) the dip of the planar discontinuity is less than that of the slope face and oriented in the same general direction; (3) the dip of the planar discontinuity is greater than the angle of the friction of the surface; and (4) the friction angle of the rock material is partially controlled by the size and shape of the grains exposed on the fracture surface and by the mass of the block above the planar discontinuity (Alharbi et al, 2014) These two types of landslides pose a substantial threat to human life and property in mountainous areas, especially in populated regions that are witnessing unplanned urbanization. The Faifa area has a high population density (∼ 35 000 inhabitants in 137 km; MMRA, 2017), receives relatively high precipitation (mean annual precipitation, MAP; 252 mm yr−1; Fig. 1b) compared to the remaining parts of Saudi Arabia

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call