Abstract

Land-use change models are useful tools for assessing and comparing the environmental impact of alternative policy scenarios. Their increasing popularity as spatial planning instruments also poses new scientific challenges, such as correctly calibrating the model. The challenge in model calibration is twofold: obtaining a reliable and consistent time series of land-use information and finding suitable measures to compare model output to reality. Both of these issues are addressed in this paper. The authors propose a model calibration framework that is supported by information on urban form and function derived from medium-resolution remote sensing data through newly developed spatial metrics. The remote sensing derived maps are compared to model output of the same date for two model scenarios using well-known spatial metrics. Results demonstrate a good resemblance between the simulation output and the remote sensing derived maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.