Abstract

ABSTRACT Remote sensing provides us with an approach for the rapid identification and monitoring of spatiotemporal changes in the urban ecological environment at different scales. This study aimed to construct a remote sensing assessment index for urban ecological livability with continuous fine spatiotemporal resolution data from Landsat and MODIS to overcome the dilemma of single image-based, single-factor analysis, due to the limitations of atmospheric conditions or the revisit period of satellite platforms. The proposed Ecological Livability Index (ELI) covers five primary ecological indicators – greenness, temperature, dryness, water-wetness, and atmospheric turbidity – which are geometrically aggregated by non-equal weights based on an entropy method. Considering multisource time-series data of each indicator, the ELI can quickly and comprehensively reflect the characteristics of the Ecological Livability Quality (ELQ) and is also comparable at different time scales. Based on the proposed ELI, the urban ecological livability in the central urban area of Wuhan, China, from 2002 to 2017, in the different seasons was analyzed every 5 years. The ELQ of Wuhan was found to be generally at the medium level (ELI ≈0.6) and showed an initial trend of degradation but then improved. Moreover, the ecological livability in spring and autumn and near rivers and lakes was found to be better, whereas urban expansion has led to the outward ecological degradation of Wuhan, but urban afforestation has enhanced the environment. In general, this paper demonstrates that the ELI has an exemplary embodiment in urban ecological research, which will support urban ecological protection planning and construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call