Abstract

In conservation science, one of the main concerns is to extract information from an artistic surface without damaging it. Raman spectroscopy has emerged in recent years as a reliable tool for the non-destructive analysis of a wide range of inorganic and organic materials in works of art and archaeological objects. Nevertheless, the technique is still mainly limited to the analysis of micro-samples taken from artistic surfaces. The development of an instrument able to perform non-contact analysis of an area of a few square centimeters aims to further increase the employment of this technique. This paper describes the development of a prototype Raman scanning spectrometer based on a diode laser, a 2D scanning mirror stage and a custom optical system, which can map a surface of 6 cm in diameter at a working distance of 20 cm. The device exhibits collecting optics with a depth of field close to 6 cm, which makes the Raman system suitable for the analysis of non-flat surfaces and three-dimensional objects. In addition, the overall dimensions and weight of the instrument have been limited in order to make the device transportable and, in principle, usable for in situ measurements. Details on the design of the device, with particular emphasis on the collecting optical system, and on results of the characterization tests carried out to assess its performances are reported. Finally, an example of an application involving the identification of pigments from a model painting is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.