Abstract

<p style='text-indent:20px;'>We study the complex-valued modified Korteweg-de Vries equation (mKdV) on the circle. We first consider the real-valued setting and show global well-posedness of the (usual) renormalized mKdV equation in the Fourier-Lebesgue spaces. In the complex-valued setting, we observe that the momentum plays an important role in the well-posedness theory. In particular, we prove that the complex-valued mKdV equation is ill-posed in the sense of non-existence of solutions when the momentum is infinite, in the spirit of the work on the nonlinear Schrödinger equation by Guo-Oh (2018). This non-existence result motivates the introduction of the second renormalized mKdV equation, which we propose as the correct model in the complex-valued setting outside <inline-formula><tex-math id="M1">\begin{document}$ H^\frac12(\mathbb{T}) $\end{document}</tex-math></inline-formula>. Furthermore, imposing a new notion of finite momentum for the initial data, at low regularity, we show existence of solutions to the complex-valued mKdV equation. In particular, we require an energy estimate, from which conservation of momentum follows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.