Abstract
We study the structure of the generator of a symmetric, conservative quantum dynamical semigroup with norm-bounded generator on a von Neumann algebra equipped with a faithful semifinite trace. For von Neumann algebras with Abelian commutant (i.e. type I von Neumann algebras), we give a necessary and sufficient algebraic condition for the generator of such a semigroup to be written as a sum of square of self-adjoint derivations of the von Neumann algebra. This generalizes some of the results obtained by Albeverio, Høegh-Krohn and Olsen1 for the special case of the finite-dimensional matrix algebras. We also study similar questions for a class of quantum dynamical semigroups with unbounded generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Infinite Dimensional Analysis, Quantum Probability and Related Topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.