Abstract

Studies of integrable quantum many-body systems have a long history with an impressive record of success. However, surprisingly enough, an unambiguous definition of quantum integrability remains a matter of an ongoing debate. We contribute to this debate by dwelling upon an important aspect of quantum integrability -- the notion of independence of quantum integrals of motion (QIMs). We point out that a widely accepted definition of functional independence of QIMs is flawed, and suggest a new definition. Our study is motivated by the PXP model -- a model of $N$ spins $1/2$ possessing an extensive number of binary QIMs. The number of QIMs which are independent according to the common definition turns out to be equal to the number of spins, $N$. A common wisdom would then suggest that the system is completely integrable, which is not the case. We discuss the origin of this conundrum and demonstrate how it is resolved when a new definition of independence of QIMs is employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.