Abstract
This article investigates a new parameter for the high-dimensional regression with noise: the distortion. This latter has attracted a lot of attention recently with the appearance of new deterministic constructions of “almost”-Euclidean sections of the L1-ball. It measures how far is the intersection between the kernel of the design matrix and the unit L1-ball from an L2-ball. We show that the distortion holds enough information to derive oracle inequalities (i.e. a comparison to an ideal situation where one knows the s largest coefficients of the target) for the lasso and the Dantzig selector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.