Abstract

When modeling the propagation of elastic guided waves in plates or cylinders, Finite Element based numerical methods such as the Scaled Boundary Finite Element Method (SBFEM) or the Semi-Analytical Finite Element (SAFE) Method lead to an eigenvalue problem to be solved at each frequency. For the particular case of shear horizontal modes in a homogeneous plate or torsional modes in a homogeneous cylinder, the problem can be drastically simplified. The eigenvalues become simple functions of the frequency, while the eigenvectors are constant. The current contribution discusses how this behavior is represented in the numerical formulation and derives the expressions for the eigenvalues and eigenvectors as well as the dynamic stiffness matrix of infinite elastic waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.