Abstract

A Cauchy type singular integral equation of the first or the second kind can be numerically solved either directly or after its reduction (by the usual regularization procedure) to an equivalent Fredholm integral equation of the second kind. The equivalence of these two methods (that is, the equivalence both of the systems of linear algebraic equations to which the singular integral equation is reduced and of the natural interpolation formulae) is proved in this paper for a class of Cauchy type singular integral equations of the first kind and of the second kind (but with constant coefficients) for general interpolatory quadrature rules under sufficiently mild assumptions. The present results constitute an extension of a series of previous results concerning only Gaussian quadrature rules, based on the corresponding orthogonal polynomials and their properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.