Abstract
In this article, we give a complex-geometric proof of the Alexandrov–Fenchel inequality without using toric compactifications. The idea is to use the Legendre transform and develop the Brascamp–Lieb proof of the Prékopa theorem. New ingredients in our proof include an integration of Timorin's mixed Hodge–Riemann bilinear relation and a mixed norm version of Hörmander's L2-estimate, which also implies a non-compact version of the Khovanskiĭ–Teissier inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.