Abstract
In a recent article, Manouchehri proved a ‘Sternberg theorem’ for Liouville vector fields and noticed that it provided normal forms for implicit differential equations and first-order partial differential equations. We establish local and global versions of Moser's celebrated result on volume and symplectic forms when they admit a non-trivial one parameter (pseudo-) group of homotheties—by definition, a Liouville field is the generator of such a flow. The local version implies that two germs of Liouville fields of a symplectic or volume form are conjugate by a diffeomorphism germ which preserves the form if and only if they are conjugate. This contains Manouchehri's theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.