Abstract

Dr M.F. Newman has asked whether in the absence of the Axiom of Choice it is possible to have two non-isomorphic elementary abelian groups of the same (finite) exponent and of the same (infinite) cardinality. By means of an example, I show that this is in fact possible, if the exponent is at least five; I do not know the answer in the remaining two cases. The example given requires the construction of a Fraenkel-Mostowski model of set theory, and for this purpose I draw upon the terminology, constructions, and results contained in the first two sections of a previous paper, “The construction of groups in models of set theory that fail the Axiom of Choice” (Bull. Austral. Math. Soc. 14 (1976), 199–232), with which I assume familiarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.