Abstract
In industry, forecast prediction and health management (PHM) is used to improve system reliability and efficiency. In PHM, remaining useful life (RUL) prediction plays a key role in preventing machine failures and reducing operating costs, especially for reliability requirements such as critical components in aviation as well as for costly equipment. With the development of deep learning techniques, many RUL prediction methods employ convolutional neural network (CNN) and long short-term memory (LSTM) networks and demonstrate superior performance. In this paper, a novel two-stream network based on a bidirectional long short-term memory neural network (BiLSTM) is proposed to establish a two-stage residual life prediction model for mechanical devices using CNN as the feature extractor and BiLSTM as the timing processor, and finally, a particle swarm optimization (PSO) algorithm is used to adjust and optimize the network structural parameters for the initial data. Under the condition of lack of professional knowledge, the adaptive extraction of the features of the data accumulated by the enterprise and the effective processing of a large amount of timing data are achieved. Comparing the prediction results with other models through examples, it shows that the model established in this paper significantly improves the accuracy and efficiency of equipment remaining life prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.