Abstract
Aim Fagus grandifolia var. mexicana (Martinez) Little has an extraordinarily restricted distribution in the Mexican montane cloud forests. Isolated Fagus (beech) populations have been recorded in less than 10 small areas (2–40 ha) in the eastern Sierra Madre at altitudes from 1400 to 2000 m. The objectives were to determine tree and seedling age, forest structure, phenology, litterfall patterns and the relationship between mast and climatic variables. Location We report on three Fagus stands at the Acatlan Volcano, Veracruz, Mexico. Methods Changes in forest cover were determined using aerial photographs. Within each stand, basal area, density and tree species composition were determined in a 0.1-ha band transect. Additionally, litterfall production was quantified and phenophases were recorded monthly over a 3-year period, and 60 tree cores were collected to determine age distribution and tree-ring growth. Results The forest was atypical in several respects. Fagus was the only dominant tree species in the crater stand, although in the rim and at the top of the volcano it was codominant with other tree species. Juveniles occurred only on the rim, but there was a seedling bank in the crater. Although forest cover in the area increased between 1968 and 1993, the Fagus stands did not change in size. Leaf production peaked in March and April, and leaf fall occurred from October through February. Litterfall production was the highest in November. During mast years, flowering started in February and between mast events there were no flowers or fruits. Minimum temperatures were highly correlated with Fagus litterfall and leaf fall. Seedlings ranged in age from 2 to 18 years and were 13–60 cm tall. Tree cores ranged from 76 to 120 years, but trees were older than the core samples. Main conclusions Although beech is considered a gap regeneration species that reaches the canopy after alternating periods of release and suppression, the trees in the crater were released when less than 1.5 m tall and have suffered few periods of suppression since. The results indicate that the crater stand was established after a severe disturbance destroyed the existing forest. We conclude that the relict beech population should be able to maintain itself, if not severely disturbed by humans or by climatic changes related to global warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.