Abstract
Vehicle lateral velocity is critical for the high-level automatic driving technology, andyyfusing Global Position System (GPS) in the lateral velocity estimation method can greatly improve the estimation accuracy. However, the method fusing GPS is seldom reported, since the problem of GPS-outage often appears. Accordingly, this article proposes a novel lateral velocity estimation method (VLVEM) based on SBI-LSTM in GPS-outage environment. Additionally, VLVEM integrating Inertial Navigation System-aided GPS (INS-aided GPS) is derived from Federated Kalman Filter (FKF) algorithm. Furthermore, during GPS-outage, induced from the Stack Bidirectional Long Short-Term Memory Recurrent Neural Network (SBI-LSTM RNN), an INS-aided GPS fault reconstructor (IGFR) is designed to reconstruct INS-aided GPS model. Finally, the simulation results show that compared with most of the existing methods which only consider the in-vehicle sensors' signals, the proposed method fusing GPS has higher lateral velocity estimation accuracy. Besides, when GPS-outage causes INS-aided GPS failure, IGFR can reconstruct INS-aided GPS model, and VLVEM still has high estimation accuracy. Combining the in-vehicle sensors and GPS, VLVEM exhibits great robustness and fault tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.