Abstract

Load balancing is a very important and complex problem in computational grids. In load balancing, jobs should be effectively distributed among resources in order to minimize the average completion time and maximize the utilization of all resources even those with low reliabilities and capacities. However, using the less reliable and slow resources implies worse completion time, whereas always selecting the powerful and reliable resources undermines the utilization of other resources. So, it is essential to develop an efficient load balancing method which makes a good tradeoff between these criteria in a way that satisfies the quality of service of jobs and fairly distributes jobs between resources based on their reliabilities and capacities. This paper proposes an efficient multicriteria load balancing method using technique for order preference by similarity to ideal solution which treats load balancing as a multi criteria decision making problem. Also, an effective weighting mechanism is proposed, which adaptively adjusts the weights of the considered criteria according to the system’s current state and jobs’ characteristics. This mechanism can make an efficient tradeoff between the considered criteria and accurately reflect the importance of each one. By simulation, the proposed method was evaluated and compared with other approaches from the literature. In the range of examined parameters’ values, the simulation results show that proposed method minimizes the average completion time by 8.7–15.7%, increases the throughput ratio up to 15.8–19.4%, and maximizes the load balancing level by 7.68–20.1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.