Abstract

With the advancement of urban rail transit towards intelligence, the demand for urban rail transit communication has increased significantly, but the traditional urban rail transit vehicle–ground communication system has been unable to meet the future vehicle–ground communication requirements. To improve the performance of vehicle–ground communication, the paper proposes a reliable low-latency multipath routing (RLLMR) algorithm for urban rail transit ad hoc networks. First, RLLMR combines the characteristics of urban rail transit ad hoc networks and uses node location information to configure a proactive multipath to reduce route discovery delay. Second, the number of transmission paths is adaptively adjusted according to the quality of service (QoS) requirements for vehicle–ground communication, and then the optimal path is selected based on the link cost function to improve transmission quality. Third, in order to enhance the reliability of communication, a routing maintenance scheme has been added, and the static node-based local repair scheme is used in routing maintenance to reduce the maintenance cost and time. The simulation results show that compared with traditional AODV and AOMDV protocols, the proposed RLLMR algorithm has good performance in improving latency and is slightly inferior to the AOMDV protocol in improving reliability. However, overall, the throughput of the RLLMR algorithm is better than that of the AOMDV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.