Abstract
Most knowledge about cellular and molecular adaptation in the heart after exercise training comes from rodent models, and this has substantially improved our knowledge about exercise-induced cardiac adaptations. However, in rodents, the electrophysiological properties of the heart are different from the human heart. Therefore, the need of exercise-training models in larger animal models is obvious. Physiological studies of cardio-respiratory fitness require training regimens that give robust and adequate testing procedures to quantify the outcome. We developed a valid and reproducible protocol for measuring maximal oxygen uptake (VO2max) in young pigs. As previous studies have exercised pigs using horizontal treadmills, we determined whether treadmill inclination may influence the level of peak oxygen uptake (VO2peak) achieved, and whether the true VO2max was reached. Eight young pigs were used. Submaximal and VO2peak were tested at five different inclinations from 13 to 30 degrees . At submaximal VO2, there was an excellent test-retest at all treadmill inclinations (r = 0.99, coefficient of variation = 1.8%). The level of VO2peak was dependent upon treadmill inclination and the true VO2max, defined as a levelling-off of VO2 despite increased running speed, was only reached a treadmill inclination of 24 degrees . For VO2peak we only observed a significant test-retest correlation when using 19 and 24 degrees inclination of the treadmill (r = 0.88, coefficient of variation = 9.7%). The use of inappropriate treadmill inclination might hide training-induced adaptations if the true VO2max is not reached. This study shows that the present test protocol can be used in future studies of exercise on treadmill, when the aim is to measure submaximal and VO2max in pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Cardiovascular Prevention & Rehabilitation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.