Abstract

This paper presents an alternative to the use of energy-based methodologies for life cycle predictions of solder interconnects. Isothermal mechanical cycling testing has been conducted using joint-scale solder samples on a novel testing apparatus. The test data shows that work as a single parameter is insufficient in predicting failure; nor does the inclusion of cyclic frequency and mean temperature improve work-based methodologies. Here, a novel semi-empirical approach is presented in which stress, strain, strain rate and temperature are individually treated to create a model capable of predicting material behaviour under arbitrary cyclic loading conditions. The model constants are fitted to the results of the isothermal mechanical cycling tests, using load drop as a measure of damage. The calibrated model is then employed to predict the failure of a BGA device under thermal cycling. The modelling results show state-of-the-art agreement with the test data and superiority over Morrow model constants from literature that have been applied to this data set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call