Abstract

This article proposes a reliability measurement for a supply chain network, in which a vertex denotes a supplier, a transfer center, or a customer, while a route connecting a pair of vertices denotes a carrier. Each carrier's available transportation capacity (e.g., number of containers) is not deterministic since the transportation capacity may be partially reserved by other customers. Thus, the supply chain network can be regarded as a Stochastic Supply Chain Network (SSCN). In an SSCN with multiple suppliers and markets, the goods may be damaged due to traffic accident, natural disaster, inclement weather, time, or collision during transportation such that the intact goods may not meet the customer's demands. In addition, the goods supplied by a specified supplier cannot exceed its production capacity, and the total transportation cost cannot exceed a budget. SSCN reliability is defined as the probability that the SSCN can successfully deliver goods to multiple customers subject to a specified level of damage, budget, and limited production capacity. An algorithm is proposed to evaluate the SSCN reliability based on minimal paths. A real case study of a pineapple supply chain network is utilized to demonstrate the utility of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call