Abstract

To achieve high reliability, the urban distribution networks are mesh-constructed and radial-operated, in which the outage load can be restored to adjacent feeders via tie-lines after faults. Conventionally, iterative optimization-simulation methods and heuristics are adopted for distribution network planning, which cannot guarantee global optimality. Besides, existing reliability-constrained planning model cannot explicitly assess the reliability indices for mesh distribution networks, so the resulted plan scheme may be overly invested. In this paper, we propose a novel multistage expansion planning model for mesh distribution networks, in which reliability assessment is explicitly implemented as constraints. The different investment/reliability preferences for buses are also customized. Specifically, post-fault load restoration between feeders through tie-lines is modeled as a case of post-fault network reconfiguration. The planning model is then cast as an instance of mixed-integer linear programming and can be effectively solved by off-the-shelf solvers. We use a 54-node system to test the performance of proposed model. Simulation results show the effectiveness and flexibility of this methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.