Abstract

AbstractReliability is a fundamental requirement of wide‐area backup protection (WABP) systems, and it is one of the most crucial performance indicators for such a WABP system. Two definitions are introduced: the reliability of WABP systems and the undetectable probability of a power line. They are determined by the specific placement of communication links (CLs) and phasor measurement units (PMUs). A simultaneous optimization model was developed to minimize the construction cost of WABP systems by optimizing the partitioning and placement of PMUs, protection centers, and CLs. The model considers several constraints, including latency, regional balance, and system reliability. To reduce the computational complexity, a cluster‐based genetic algorithm was developed to determine the optimal solution. Finally, numerical simulations were conducted using IEEE test cases. The results demonstrate that the proposed method can minimize the construction costs of WABP systems while increasing their reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.