Abstract

A cardinality-constrained portfolio caps the number of stocks to be traded across and within groups or sectors. These limitations arise from real-world scenarios faced by fund managers, who are constrained by transaction costs and client preferences as they seek to maximize return and limit risk. We develop a new approach to solve cardinality-constrained portfolio optimization problems, extending both Markowitz and conditional value at risk (CVaR) optimization models with cardinality constraints. We derive a continuous relaxation method for the NP-hard objective, which allows for very efficient algorithms with standard convergence guarantees for nonconvex problems. For smaller cases, where brute force search is feasible to compute the globally optimal cardinality-constrained portfolio, the new approach finds the best portfolio for the cardinality-constrained Markowitz model and a very good local minimum for the cardinality-constrained CVaR model. For higher dimensions, where brute-force search is prohibitively expensive, we find feasible portfolios that are nearly as efficient as their non-cardinality constrained counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.