Abstract

The so-called elementary theory of the atomic photoeffect is presented in a form that is suited for practical numerical calculation of subshell cross sections and angular distributions of emitted photoelectrons. Atomic states are described within the independent-electron approximation, with bound and free one-electron orbitals that are solutions of the Dirac equation with the Dirac–Hartree–Fock–Slater self-consistent potential of the ground-state configuration. Detailed derivations are given of subshell cross sections for both excitation to discrete bound levels and ionization. In the case of ionization, the cross section differential in the direction of the photoelectron is obtained for partially polarized photons, with the polarization specified by means of the Stokes parameters. The theoretical formulas have been implemented in a computer program named photacs that calculates tables of excitation and ionization cross sections for any element and subshell. Numerical calculations are practicable for excitations to final states with the principal quantum number up to about 20 and for ionization by photons with energy up to about 2 MeV. Elaborate extrapolation schemes for determining the subshell cross section for excitation to bound levels with larger principal quantum numbers and for ionization by photons with higher energies are described. The effect of the finite width of atomic energy levels is accounted for by convolving the calculated subshell cross-section with a Lorentzian profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.