Abstract
The relativistic zeroth-order regular approximation (ZORA) DFT method was employed to investigate indirect spin-spin coupling tensors involving fluorine, (1)J(X, F). The relative contributions of the mechanisms contributing to (1)J(X, F) are discussed, with special attention paid to the magnitude and origin of the anisotropy in this tensor, DeltaJ. This quantum chemical study demonstrates that, for the systems investigated, the ZORA-DFT method reproduces the magnitude of (1)J(X, F)(iso) and indicates that DeltaJ(X, F) is of the same order of magnitude as (1)J(X, F)(iso). Several examples are provided that demonstrate the importance of considering contributions of DeltaJ to the experimental measurement of effective dipolar coupling constants, R(eff). Given the difficulties with determining DeltaJ experimentally and the promising computational results, we suggest that the quantum chemical calculation of (1)J(X, F) be used as a complementary tool to aid in the analysis of data from NMR experiments designed to measure dipolar coupling constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.