Abstract
The geometry and electronic structure of several tris and tetrakis-cyclopentadienyl thorium and uranium complexes have been investigated using Density Functional theory (DFT) calculations in the framework of the relativistic zeroth-order regular approximation (ZORA) implemented in the ADF (Amsterdam density functional) program. In all cases, the important interaction between the metal 5f orbitals and the Cp 3 moiety is brought to light. However, coordination with a fourth ligand like H − or Cl − leading to Cp 3AnL species involves mainly the metal 6d orbitals, whereas in the case of L = Cp −, the 5f uranium orbitals act also efficiently. The actinide 5f orbitals are more efficient in uranium than in thorium for metal to ligand bonding. Cyclopentadienyl to uranium donation is enhanced when the metal ion charge increases. Finally, our calculations indicate that the Cp 3UH structure could be thermodynamically stable, although it has not yet been synthesized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.