Abstract
A relative reliability approach for Direct Displacement-Based Design (DDBD) is first proposed in this paper, which is based on the average reliability level implicit in current Chinese design codes. By introducing a relative reliability coefficientα, the determination of reliability from DDBD is transformed to the calculation of its ratio to the average reliability of current Chinese codes. This approach not only follows the reliability principle of current Chinese codes, but also avoids the complex calculation of reliability in general. The calculation of reliability at any performance level can be transformed to the nominal reliability of frequent earthquake for the expected earthquake risk level. Meanwhile, based on the assumption of elasticity, it is shown that, under frequent earthquake risk, the calculated base shear derived from DDBD theoretically equals that from force-based design (FBD). Therefore, a revised calculation of section bearing capacity for DDBD, which follows the expression in current Chinese codes, is advised, according to the numerical study of 24 examples of Partially Prestressed Reinforced Concrete (PPRC) frame structures. Finally, this proposed approach is verified to be effective and superior by a comparative analysis of 10 examples of PPRC frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.