Abstract
Rainbow trout were exposed to a range of silver concentrations (as AgNO3) in flowing synthetic soft water (0.05 mM Na+, 0.05 mM Cl-, 0.05 mM Ca2+, 0.02 mM Mg2+, 0.02 mM K+, pH 7.0, approximately 0.7 mg C/L dissolved organic carbon, 10 mg CaCO3/L, 10 +/- 2 degrees C) to investigate a possible relationship between short-term gill silver accumulation (3 h or 24 h) and acute silver toxicity (96-h mortality). We also investigated potential relationships between gill silver accumulation and inhibition of Na+ uptake plus inhibition of gill Na+K(+)-adenosine triphosphatase (ATPase) activity. The 96-h median lethal concentration (LC50) values were 13.3 microg total Ag L(-1) and 3.3 microg dissolved Ag L(-1). A relationship was demonstrated between 3-h and 24-h gill silver accumulation and 96-h mortality. A relationship also was demonstrated between gill silver accumulation and inhibition of Na+ uptake at 24 h of exposure. No relationship between gill silver accumulation and inhibition of gill Na+K(+)-ATPase activity was found. The 96-h median lethal gill accumulation (LA50) values of 129 (at 3 h) and 191 ng g(-1) (at 24 h) and a conditional equilibrium binding constant of 8.0 for Ag+ binding to the gills were calculated. These observations support use of the silver biotic ligand model (BLM) as a regulatory tool to predict acute silver toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.