Abstract
Generalised Mean squared error is a flexible measure of the adequancy of ? repression estimator. It allows specific characteristics of the regression model and its intended use to be In-corportated in the measure itself. Similarly, integrated mean squared error enables a researcher to stipulate particular regions of interest and wi ighting functions in the assessment of a prediction equation. The appeal of both measures is their ability to allow design or model characteristics to directly influence the evaluation of fitted regression models. In this note an e-quivalence of the two measures is established for correctly specified models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.