Abstract
Transduction is an inference mechanism adopted from several classification algorithms capable of exploiting both labeled and unlabeled data and making the prediction for the given set of unlabeled data only. Several transductive learning methods have been proposed in the literature to learn transductive classifiers from examples represented as rows of a classical double-entry table (or relational table). In this work we consider the case of examples represented as a set of multiple tables of a relational database and we propose a new relational classification algorithm, named TRANSC, that works in a transductive setting and employs a probabilistic approach to classification. Knowledge on the data model, i.e., foreign keys, is used to guide the search process. The transductive learning strategy iterates on a k-NN based re-classification of labeled and unlabeled examples, in order to identify borderline examples, and uses the relational probabilistic classifier Mr-SBC to bootstrap the transductive algorithm. Experimental results confirm that TRANSC outperforms its inductive counterpart (Mr-SBC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.