Abstract

This paper presents a new interpretation procedure to estimate the initial state parameter from cone penetration testing (CPTu) in undrained conditions based on the results from a comprehensive set of numerical simulations of CPTu in low permeability liquefiable soil. CPTu simulations are performed using the Particle Finite Element Method, whereas the material response is modelled with the Clay and Sand Model. The effects of soil constitutive parameters and roughness of the soil–steel interface are examined. It turns out that the numerical results are correctly summarized by an analytical relation derived from undrained cavity expansion results in critical state soils, as long as the constraints resulting from cone geometry are taken into account. The resulting adapted analytical formulation is notable for its simplicity and ease of use, comparing favorably with existing alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.