Abstract

Weston's ray invariant or "characteristic time" in a range-dependent environment is exactly equivalent to the Wentzel-Kramers-Brillouin phase integral for ducted normal modes. By considering a ray element it is shown that the ray invariant can also be written in terms of ray cycle distance and cycle time. This leads to a useful formula for group velocity in terms of cycle distance and mode number. Drawing a distinction between the ray and wave interpretation, the Airy phase (i.e., the existence of a group velocity minimum) can be included in this approach. Favorable comparisons are made with group velocities derived from a normal mode model. The relationship is valid for variable sound speed and variable bathymetry, and this is demonstrated numerically. The formula is applicable to active sonar, multipath pulse shape, target signatures, reverberation, tomography, and underwater communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.